Benzylic Chlorination by Sulphuryl Chloride: Suppression of Chlorine Atom Chains

By K. H. LEE* and T. O. TEO

(Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia)

Summary Suppression of chlorine-atom chains by trace amounts of trichloroethylene has been achieved in the chlorination of p-xylene, and of benzaldehyde in competition with cyclohexane, by sulphuryl chloride in CCl_4 solution.

BENZYLIC chlorination by sulphuryl chloride in dilute CCl_4 solution has recently been found¹ to exhibit different selectivity to those found for photo-chlorination² under hypochlorite. These chlorine chains are, however, eliminated by traces of olefins, *e.g.* trichloroethylene, which act as chlorine atom traps, and greatly suppressed in mixed aliphatic-benzylic systems where chains propagate largely through alkyl radicals.

The light-initiated chlorination of p-xylene and of benzaldehyde relative to cyclohexane by sulphuryl chloride, in a number of solvents, has been measured¹ in presence of 2 mole % of trichloroethylene (relative to SO₂Cl₂) (Table). The reactivity values for p-xylene in benzene remain

	-							
Substrate	Concn. м ^ь Solvent	0· 4	0-8	1.2	1.6	2.0	2•4	$2 \cdot 8$
$K_{p-xylene}$	$C_{\mathfrak{g}}H_{\mathfrak{g}}$	0.64	0.66		0.66	_	0.66	
K _{p-xylene}	$C_6H_6 + 2\% C_2HCl_3$	0.64	0.66		0.68		0.64	
K _{p-xylene}	CČl	1.04	1.02	0.86	0.70	0.58	0.48	0.48
$K_{p-xylene}$	$\operatorname{CCl}_{4}^{2} + 2\% \operatorname{C_{2}HCl_{3}}$	1.06	1.06	1.02	1.06		1.02	
KPhCHO	CCI	8.04	8.16	8.16	8.75		8.40	
KPhCHO	$CCl_4 + 2\% C_2HCl_3$		8.04	8.16	8.28	8.28		—
Concn. м of PhBu ^t in CCl ₄		0	0.4	0.8	1.2	1.6	2.0	
$K_{\rm PhCHO}$ at 1.6 m each of PhCHO + C ₆ H ₁₂		8.75	14-4	17.0	18.7	19.7	20.7	

 TABLE

 Reactivities (per hydrogen atom)^a of p-xylene and benzaldehyde relative to cyclohexane at 40°

* Average of triplicate experiments, with mean deviation of $\leq +3\%$.

^b Concn. of each substrate, cyclohexane and sulphuryl chloride, and reaction time adjusted for 20-30% consumption of organic substrates.

similar conditions. We now report the first study of sulphuryl chloride chlorination in which chlorine-atom chains are believed to be completely suppressed.

Walling and McGuinness⁸ have demonstrated that chlorine-atom chains may compete with alkoxy-radical chains in the reaction of hypochlorites with alkylbenzenes, and in the decomposition of benzyl-dimethylcarbinyl constant at 0.65 for varying substrate concentration, with or without trichloroethylene. This can be attributed^{4,5} to the benzene-complexed chlorine atoms as the hydrogenabstracting species.

In contrast, the value in CCl_4 solution varies with concentration of *p*-xylene, being approximately 1.0 up to 0.8 M, and drops linearly with increasing concentration to 0.50 at 2.2 M but flattens out to 0.48 at higher concentration. This variation is understandable as p-xylene is a stronger electron-donor than benzene,⁴ and, as the concentration increases hydrogen-abstraction by the strongly π -complexed chlorine atom predominates, and is quite complete at concentrations of 2.4 m. However, in the presence of trichloroethylene the reactivity values remain constant at 1.04 up to 2.4 M p-xylene in CCl₄. Thus, it appears that the olefin acts as an efficient chlorine-atom trap and completely suppresses complexing by p-xylene. The results here suggest that chlorine-atom chains can be largely suppressed, allowing hydrogen-abstraction by the chlorosulphinyl radicals to predominate, as in the cases reported¹ for dilute solution in CCl_4 .

Benzaldehyde, a weaker electron-donating solvent than

- ¹ K. H. Lee, Tetrahedron, 1969, 25, 4363.
- ²G. A. Russell, A. Ito, and D. G. Henry, J. Amer. Chem. Soc., 1963, 85, 2976.
- ³ C. Walling and J. A. McGuinness, J. Amer. Chem. Soc., 1969, 91, 2053.
 ⁴ G. A. Russell, J. Amer. Chem. Soc., 1958, 80, 4987, 4997, 5002.
- ⁵ C. Walling and M. F. Nayahi, J. Amer. Chem. Soc., 1959, 81, 1485.
 ⁶ K. H. Lee, Tetrahedron, 1970, 26, in the press.

benzene, in contrast to p-xylene, shows no concentration effect on its reactivity even in the absence of trichloroethylene, *i.e.* substantially constant at 8.2 per hydrogen atom. However, on addition of t-butylbenzene, a strongly electron-donating solvent,⁴ the values increase substantially to about 20 for 2.0 m-hydrocarbon. This clearly indicates participation of π -complexed chlorine-atom chains.

The present results support our earlier findings^{1,6} that in dilute CCl₄ solution the polar effects shown in the chlorination of ring-substituted toluenes, ethylbenzenes, and benzaldehydes by sulphuryl chloride can be attributed to the chlorosulphinyl radical as the principal hydrogenabstracting species.

(Received, May 15th, 1970; Com. 746.)